Новости

Расчет офсетной зеркальной антенны для приема сигнала, со спутника на геостационарной орбите

Работа добавлена:






Расчет офсетной зеркальной антенны для приема сигнала, со спутника на геостационарной орбите на http://mirrorref.ru

Расчет офсетной зеркальной антенны для приема сигнала, со спутника на геостационарной орбите

Содержание

Введение.............................................................................................3

  1. Исходные данные варианта ..................................................................5
  2. Сравнительный анализ антенных устройств.........................................6
  3. Расположение спутника и Земли:.........................................................15
  4. Расчет основных энергетических характеристик антенны.........................................17
  5. Расчет конструкции антенны..............................................................18
    1. Расчет конструкционных параметров антенны...........................18
    2. Расчет волновода.......................................................................20
    3. Расчет облучателя.....................................................................21
    4. Расчет коэффициента отражения..............................................22
    5. Расчет возбуждающего устройства...........................................23
    6. Расчет ширины диаграммы направленности антенны.................26
    7. Расчет допусков.........................................................................26
      1. Диаграммы направленностей облучателя.............................................27
      2. Подвес и материал..............................................................................30
      3. Выводы и заключения..........................................................................31
      4. Список литературы............................................................................32

Перечень использованных  сокращений

ИСЗ-Искусственный спутник Земли

КНД- коэффициент направленного действия

ДН- диаграмма направленности

МВ- метровые волны

ДМВ- дециметровые волны

СМВ- сантиметровые волны

ММВ- миллиметровые волны

КПД- Коэффициент полезного действия

КИП - Коэффициент использования поверхности

Введение

В спутниковом телевизионном вещании программы от наземных студий передаются к приёмнику телезрителя через активный ретранслятор, находящийся на ИСЗ. Для непосредственного телевизионного вещания используются спутники, расположенные на геостационарной (синхронной) орбите на высоте 35768 км над земным экватором. (Рис.1) Только на этой орбите период обращения спутников равен (синхронен) периоду обращения Земли (24 ч) и при этом они относительно её поверхности оказываются неподвижными (стационарными). Спутники, размещенные на других орбитах, не будут неподвижными относительно Земли и для приёма их сигналов необходима специальная конструкция поворотного узла антенны и управляющая, им следящая система.

Рис.1. Геостационарная орбита

Передатчик спутника, находящегося на геостационарной орбите без остронаправленной антенны, может обеспечить телевизионным вещанием около трети поверхности Земли. Однако из-за того, что мощность передатчика ограничена источниками питания (солнечными батареями), находящимися на спутнике и достигает обычно нескольких сот ватт, плотность потока мощности, падающей на Землю, оказывается недостаточной для приёма сигналов. В тоже время большая часть мощности передатчика тратится на облучение необитаемых областей (морей, океанов, пустынь, тундры и т.п.). Для увеличения плотности потока мощности и возможности приёма на небольшие приёмные антенны излучаемая передатчиком спутника мощность концентрируется антенной в узком луче (около одного градуса), направленном только на ту территорию, которую необходимо охватить непосредственным телевизионным вещанием. Благодаря этому плотность потока мощности возрастает до вполне приемлемых значений.

Географические границы зон возможного приёма находят в результате проекции основного луча диаграммы направленности антенны на шаровую поверхность Земли. Границы выглядят в виде эллипсов.

В настоящее время спутниковые системы связи стали одним из основных видов дальней связи.  Связь между земными пунктами, находящимися на расстояниях от нескольких тысяч до нескольких десятков тысяч километров друг от друга, осуществляется на сантиметровых волнах при помощиИСЗ, применяемых в качестве активных или пассивных ретрансляторов. На сантиметровых и дециметровых волнах производится также связь с космическими кораблями, удаленными от Земли на сотни миллионов километров.

Для увеличения пропускной способности спутниковых систем связи кроме ранее использовавшегося частотного диапазона 4/6 ГГц в настоящее время осваиваются новые диапазоны 11/14, 12/18 и 20/30 ГГц.

Для приёма спутникового телевидения используют антенны различных конструкций. Среди них получили распространение и планарные (плоские) антенны, основой которых служит решётка диполей с рефлектором в виде металлического листа, т.е. так называемая фазированная антенная решётка. Улавливаемые диполями сигналы суммируются и поступают на входконвертера. Регулируя фазовращателем фазу и амплитуду сигнала, принятого каждым диполем, можно сформировать суммарную диаграмму направленности, как неподвижную, так и изменяющую направление приёма - сканирующую. Безинерционное мгновенное электронное сканирование с применением системы слежения позволяет устанавливать такие антенны на подвижных объектах (самолёте, ракете или нестационарном спутнике). При этом число электронных фазовращателей равно числу применяемых диполей, из-за чего такие антенны оказываются очень дорогими и применяются лишь в радиолокационной и космической технике, где их большая стоимость может быть оправдана.

Так как все приёмные антенны, в том числе и спутникового телевидения, собирают энергию сигнала, падающего на них, эту функцию с успехом выполняют также и параболические антенны, в которых фокусировка энергии на облучателе происходит по законам оптики благодаря отражению от поверхности параболического рефлектора. Для спутникового приёма можно использовать однозеркальные антенны сосесимметричным илисмещённымоблучателем и двухзеркальные антенны посхеме Кассегрена с параболическим рефлектором и гиперболическим контррефлектором.

К зеркальным антеннам относится достаточно широкий класс антенн, в которых формирование диаграммы направленности происходит за счёт отражения электромагнитных волн первичных источников - облучателей от металлических зеркал той или иной формы. В простейшем случае зеркало может представлять собой плоскую металлическую пластину достаточно больших размеров. Такая пластина играет роль рефлектора, благодаря которому излучение будет происходить преимущественно по направлению нормали к поверхности зеркала. Несколько более сложным является зеркало в виде двух плоских металлических пластин, чаще всего образующих прямой двугранный угол. Вместе с облучателем, представляющим собой симметричный вибратор, такое зеркало образует так называемую уголковую антенну. Вибратор обычно устанавливается в плоскости биссектрисы двугранного угла, образованного пластинами зеркала, параллельно его ребру. Значительно большими направленными свойствами обладают антенны с зеркалом в виде параболоида вращения. Такие антенны имеют узкую диаграмму направленности в двух плоскостях, которая называется диаграммой направленности игольчатого типа. Если нужно иметь антенну, диаграмма направленности которой достаточно узкая в одной плоскости и широкая в другой плоскости, перпендикулярной первой, то в качестве зеркала можно использовать усечённый параболоид вращения. Однако в такой антенне трудно получить диаграмму направленности с большой разницей в ширине диаграмм направленности в одной и другой главной плоскости. Поэтому для реализации "веерной" диаграммы направленности чаще используется зеркало в виде параболического цилиндра с линейным облучателем.

Исходные данные для расчета

Вариант №0201

Орбита спутникового

ретранслятора (СР)

Геостационарная, высота

над экватором Земли 35875 км

Эквивалентная изотропно излучаемая мощность (ЭИИМ) СР

46,5 кВт

Средняя частота излучения СР

16 ГГц

Ширина спектра излучения СР

8 МГц

Поляризация излучения СР

Линейная

Угол места СР

36 град

Мощность сигнала на выходе антенны

0,4 пВт

Сравнительный анализ антенных устройств

1) Вибраторные антенны (наиболее просты в изготовлении, вследствие чего наиболее распространены, особенно на частотах метрового и дециметрового диапазонов. Вследствие низкого КНД используются в основном как приемные. Легко может быть реализована как линейная, так и круговая поляризация (турникетные антенны). При использовании специальной конструкции могут быть достаточно широкополосные (диполь Надененко) – полоса до 50%. Входные сопротивления могут изменятся в большом диапазоне значений в зависимости от конструкции):

а)Полуволновой вибратор:

Форма ДН – тороидальная

Ширина ДН –

Достижимый КНД – 1,64

Диапазон волн – МВ, ДМВ, СМВ

Коэффициент перекрытия диапазона – 1,3…1,5

Поляризация – линейная, однако, два перпендикулярных вибратора, питаемых со сдвигом фаз могут работать с полем эллиптической поляризации

б)Петлевой вибратор Пистолькорса:

Форма ДН – тороидальная

Ширина ДН –

Достижимый КНД – 1,64

Диапазон волн – МВ, ДМВ

Коэффициент перекрытия диапазона – 2…2,5

Поляризация – линейная, однако, два перпендикулярных вибратора, питаемых со сдвигом фаз могут работать с полем эллиптической поляризации

в)Волновой вибратор:

Форма ДН – тороидальная

Ширина ДН –

Достижимый КНД – 2,5

Диапазон волн – МВ, ДМВ

Коэффициент перекрытия диапазона – 1,35

Поляризация – линейная, однако, два перпендикулярных вибратора, питаемых со сдвигом фаз могут работать с полем эллиптической поляризации

г)Вибратор с линейным пассивным рефлектором:

Форма ДН – приблизительно кардиоида вращения

Ширина ДН –

Уровень боковых (задних) лепестков – не менее -15 дБ

Достижимый КНД – 4…6

Диапазон волн – МВ, ДМВ, СМВ

Коэффициент перекрытия диапазона – 1,35

Поляризация – линейная, однако, два перпендикулярных вибратора, питаемых со сдвигом фаз могут работать с полем эллиптической поляризации

д)Вибратор с плоским рефлектором:

Форма ДН – приблизительно кардиоида вращения

Ширина ДН –

Уровень боковых (задних) лепестков – не менее -16,5…-9 дБ

Достижимый КНД – до 7

Диапазон волн – МВ, ДМВ, СМВ

Коэффициент перекрытия диапазона – 1,3…1,5

Поляризация – линейная, однако, два перпендикулярных вибратора, питаемых со сдвигом фаз могут работать с полем эллиптической поляризации

е)Директорная антенна:

Форма ДН – игольчатая, без учета влияния Земли

Ширина ДН –

Уровень боковых (задних) лепестков – -15…-10,5 дБ

Достижимый КНД – 40

Диапазон волн – МВ, ДМВ

Коэффициент перекрытия диапазона – 1,1…1,35

Поляризация – линейная, однако, два перпендикулярных вибратора, питаемых со сдвигом фаз могут работать с полем эллиптической поляризации

ж)Многовибраторная синфазная антенна с пассивным рефлектором:

Форма ДН – игольчатая или веерная

Ширина ДН – до

Уровень боковых (задних) лепестков –  -15…-9 дБ

Достижимый КНД – ограничивается лишь конструктивными особенностями

Диапазон волн – МВ, ДМВ

Коэффициент перекрытия диапазона – 1,15…1,35

Поляризация – линейная, однако, два перпендикулярных вибратора, питаемых со сдвигом фаз могут работать с полем эллиптической поляризации

2) Щелевые антенны (ввиду отсутствия выступающих частей излучающая поверхность может быть совмещена с внешними обводами корпуса летательного аппарата; распределение поля в раскрыве может выбираться в широких пределах за счет изменения связи излучателя с волноводом; имеет сравнительно простое возбуждающее устройство; проста в эксплуатации; имеет ограниченный диапазон свойств):

а)Одиночная односторонняя щель в плоском экране бесконечных размеров:

Форма ДН – широкий однонаправленный лепесток

Ширина ДН –

Уровень боковых (задних) лепестков – четко выраженных боковых лепестков нет

Достижимый КНД – 3…3,5

Коэффициент перекрытия диапазона – 1,1

Поляризация – линейная

б)Кольцевая щель:

Форма ДН – воронкообразная

Ширина ДН – ненаправленная в плоскости щели

Уровень боковых (задних) лепестков – четко выраженных боковых лепестков нет

Достижимый КНД – несколько единиц

Коэффициент перекрытия диапазона – 1,5

Поляризация – линейная

в)V-образная щель

Форма ДН – воронкообразная

Ширина ДН – ненаправленная в плоскости щели

Уровень боковых (задних) лепестков – четко выраженных боковых лепестков нет

Достижимый КНД – несколько единиц

Коэффициент перекрытия диапазона – 1,4

Поляризация – линейная

г)Крестообразная щель:

Форма ДН – широкий однонаправленный осесимметричный лепесток

Ширина ДН –  по θ-му компоненту и  по-му

Уровень боковых (задних) лепестков – четко выраженных боковых лепестков нет

Достижимый КНД – 3,5…4

Коэффициент перекрытия диапазона – 1,1

Поляризация – эллиптическая

д)Двухщелевой облучатель:

Форма ДН – широкий однонаправленный осесимметричный лепесток

Ширина ДН –

Уровень боковых (задних) лепестков – четко выраженных боковых лепестков нет

Достижимый КНД – 7…8

Коэффициент перекрытия диапазона – 1,1

Поляризация – линейная

е)Одиночная многощелевая антенна:

Форма ДН – веерная

Ширина ДН –

Уровень боковых (задних) лепестков – более -25 дБ

Достижимый КНД – 400

Коэффициент перекрытия диапазона – 1,1

Поляризация – линейная или эллиптическая

ж)Плоская решетка:

Форма ДН – игольчатая

Ширина ДН – до

Уровень боковых (задних) лепестков – более -25 дБ

Достижимый КНД – 3500…4500

Коэффициент перекрытия диапазона – 1,1

Поляризация – линейная или эллиптическая

3) Волноводно-рупорные антенны (наиболее простые антенны, являющиеся частью питающего волновода. Имеют высокий КПД порядка 100%, являются широкополосными устройствами, однако для достижения высокого КНД необходимо увеличивать ширину раскрыва рупора. При этом ухудшается его согласование с волноводом, так что нужно увеличивать длину рупора пропорционально квадрату увеличения его поперечных размеров. Для обеспечения круговой поляризации необходимо вводить дополнительные элементы в раствор рупора, либо применять пару рупоров с взаимным смещением фаз 900):

а)Открытый конец волновода:

Форма ДН – однонаправленный широкий лепесток

Ширина ДН –

Уровень боковых (задних) лепестков – четко выраженных боковых лепестков нет

Достижимый КНД – 2…5

Диапазон волн – СМВ

Коэффициент перекрытия диапазона – 2,6…2,9

Поляризация – линейная (нетрудно получить круговую)

б)Секториальные плоскостные оптимальные рупоры:

Форма ДН – веерная

Ширина ДН – в плоскости расширения

Уровень боковых (задних) лепестков – -14…-9 дБ (уровень бокового излучения взят для направления, соответствующего первому боковому лепестку)

Достижимый КНД – 6…50

Диапазон волн – СМВ

Коэффициент перекрытия диапазона – 2,6…2,9

Поляризация – линейная

в)Коробчатый рупор:

Форма ДН – веерная

Ширина ДН –

Уровень боковых (задних) лепестков –

Достижимый КНД – 2…40

Диапазон волн – СМВ

Коэффициент перекрытия диапазона – 2,6…2,9

Поляризация – линейная

г)Пирамидальный и конический оптимальные рупоры:

Форма ДН – однонаправленный узкий лепесток

Ширина ДН –

Уровень боковых (задних) лепестков –  (уровень бокового излучения взят для направления, соответствующего первому боковому лепестку)

Достижимый КНД – 10…400